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SHOCK WAVES FAR FROM THEIR SOURCE 

L. Landau 

ABSTRACT. 
from a body moving at a supersonic velocity, there exist 
two shock waves which follow each other, rather than one 
wave, as has been supposed. 
the law of decrease of their intensity are determined. 
propagation of spherical shock waves (explosion waves) at 
large distances from the point of explosion also is inves- 
t igat ed . 

This study demonstrates that at large distances 

The shapes of these waves and 
The 

Shock waves are weak at large distances from their source. Consequently, /286* 
they have the character of sound waves. However, an ordinary linear approxima- 
tion is not sufficient for our purposes; it is necessary to examine the proper- 
ties of low-amplitude sound waves in the second approximation. Below, we shall 
be concerned with cylindrical waves; however, bearing in mind that at large 
distances it is possible to consider a cylindrical or spherical wave in each 
small section as a wave, we shall first mention some properties of waves. 

As we know, a travelling wave with an arbitrary amplitude is described by 
the so-called Riemann solution to the motion equations: 

where f ( v )  is an arbitrary function of gas velocity V ,  while c is the local 
velocity of sound which is related to v by means of 

. I 

where p is the density and V is the specific volume of the gas. 

These two formulas implicitly determine the velocity v and the remaining 
quantities for the wave as a function of x and t, <.e., the.wave profile at 
each given moment of time. When t = 0, we have z = f ( v ) ,  $.e., the inverse 
function of f ( v )  determines the wave profile at the initial moment of time. 

The quantity 

is the velocity at which the points of the wave profile move. 
variable for different points of the profile. 

This velocity is 
Consequently, the profile will 

*Numbers in the margin indicate pagination in the foreign text. 
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not  remain constant ,  and i t  w i l l  change i t s  khape with t i m e .  L e t  us say t h a t  
having expressed u as a func t ion  of pressurerp i n  t h e  wave, f o r  the  de r iva t ive  
we have 

a computation r e s u l t s  i n  /287 

2 2  The a d i a b a t i c  de r iva t ive  is (a V / a p  )s, where S is t he  entropy, which is  

p o s i t i v e  f o r  a l l  gases, so t h a t  du/@ > 0. 
of t h e  wave p r o f i l e  i nc reases  i n  proport ion t o  t h e  pressure i nc rease  a t  t h a t  
point .  
expansion seem t o  s tand  still .* 

Thus, t h e  v e l o c i t y  of a given po in t  

Therefore,  t h e  poin ts  of compression move forward, while  t h e  po in t s  of 

For  a low-amplitude wave, t h e  ve loc i ty  u of the  po in t s  of t he  p r o f i l e  i n  
the  f i r s t  approximation w i l l  be  obtained i f  we p lace  t h e  v e l o c i t y  v 5: 0 i n  (l), 
; . e . ,  u = e . 
values  of &e quan t i t i e s . )  
a change i n  shape. 

(Letters with the  subsc r ip t  zero w i l l  des igna te  equi l ibr ium 
This corresponds t o  wave p r o f i l e  movement without 

In  the  next approAmation, we have 

or 

where p '  i s  t he  v a r i a b l e  p a r t  of t h e  

where y = e / e  is  the heat capac i ty  

*For a more d e t a i l e d  d iscuss ion  

P V  

[l], 577. 

pressure  i n  t h e  wave. For an i d e a l  gas 

( for  a i r  a = 0.86) 

ratio at  cons tan t  pressure  and volume. 

concerning t h e  Riemann s o l u t i o n ,  see e.g., 

2 



I 

When t h e  wave p r o f i l e  is  deformed t o  t h e  po in t  t h a t  ambiguity appears i n  
i t ,  we know t h a t  a shock wave emerges. 
becomes inappl icable  after t h e  formation of d i scon t inu i t i e s .  However, i t  is 
s i g n i f i c a n t  t h a t  t h i s  s o l u t i o n  app l i e s  f o r  low-amplitude waves i n  t h e  second 
approximation examined. It a l s o  appl ies  when d i s c o n t i n u i t i e s  are present .  It 
i s  poss ib le  t o  be c e r t a i n  of t h i s  i n  the  following manner. 
i o n  and s p e c i f i c  volume shocks i n  a discont inui ty  are i n t e r r e l a t e d  by t h e  re- 
l a t i o n s h i p  

Generally speaking, the Riemann so lu t ion  

Veloci ty ,  compress- 

' 8 -  '1 c= J ( P ,  -pa) ('8 v#7 
The change of ve loc i ty  v along a c e r t a i n  length  

t h e  Riemann s o l u t i o n  i s  equal  t o  t h e  i n t e g r a l  
interval of t he  3; axis i n  

.. 

A s i m p l e  computation using series expansion ind ica t e s  t h a t  both of t h e  
wr i t t en  expressions only d i f f e r  from each o the r  i n  t h e  terms of t h e  t h i r d  order  
of smallness. (During computation, i t  i s  necessary t o  bear  i n  mind t h a t  t h e  
entropy change i n  the  d iscont inui ty  i s  a third-order  quant i ty ,  while  entropy 
i s  general ly  constant i n  the  Riemann so lu t ion . )  

1288 

Hence, i t  follows t h a t  t h e  morion i n  a t r ave l ing  wave when a d iscont inui ty  

The appropr ia te  
is present  can be described wi th  an accuracy up t o  t h e  terms of t h e  second or- 
der  on each s i d e  of t he  d iscont inui ty  by the  Riemann so lu t ion .  
boundary condi t ion w i l l  thereby be achieved i n  the  d i scon t inu i ty  i t s e l f .  
t he  following approximations, t he  quant i ty  r e l a t e d  t o  t h e  appearance of t h e  
waves r e f l e c t e d  from t h e  d iscont inui ty  su r face  w i l l  no t  be  indicated.  

In 

The place of t h e  d i scon t inu i ty  formation i n  t h e  wave is  determined b y x h e  
simple geometric condi t ion which can be derived ' ea s i ly  using formula (2) ,  and 
t h e  flow cont inui ty  condi t ion of matter i n  the  d iscont inui ty  (see [l], 578). 
The discont inui ty  is s i t u a t e d  i n  such a way t h a t  t h e  area enclosed wi th in  t h e  
curve depic t ing  t h e  wave p r o f i l e  remains t h e  same as f o r  the  ambiguous curve 
which is  determined by t h e  Riemann so lu t ion .  

L e t  us now examine a body which is moving s t e a d i l y  a t  a supersonic  veloc- 
i t y  U. We s h a l l  select t h e  coordinate  axis x i n  t h e  d i r e c t i o n  of the body's 
motion, and s h a l l  l e t  r be t h e  d is tance  from t h a t  axis. 
from the  body, the  ve loc i ty  p o t e n t i a l  
first approximation by t h e  wave equation 

A t  l a r g e  d is tances  
( r , a )  of t h e  gas  is  determined i n  t h e  

The s teady motion condi t ion of t h e  body is 
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Combining both of these  

I f  i n  t h e  p lace  of 5 we 

xd*= \ X!'(X)dX s 
tcb0a8) - ( e b w )  

equations,  w e  ob ta in  

introduce the  va r i ab le  

w e  ob ta in  t h e  equation 

i . e . ,  t h e  equat ion of a c y l i n d r i c a l  wave, i n  which T is  t h e  t i m e .  

A t  s u f f i c i e n t l y  l a r g e  d is tances ,  i t  is  poss ib le  t o  consider a c y l i n d r i c a l  
wave i n  each small s ec t ion  as being two-dimensional. 
each poin t  of t h e  wave p r o f i l e  w i l l  be determined by formula (2). However, i f  
w e  wish t o  use  t h i s  formula t o  trace t h e  poin t  s h i f t  of t he  wave p r o f i l e  over 
long i n t e r v a l s ,  i t  is necessary t o  consider t h a t  a l ready i n  t h e  f i r s t  approx- 

' imation t h e  amplitude of t h e  c y l i n d r i c a l  wave decreases with d is tance  as l/G. 

Then, t h e  ve loc i ty  of 

Introducing the  designat ion 

and i n s e r t i n g  it i n t o  formula (Z), we obtain /289 

The f i r s t  term corresponds t o  wave motion without a change in p r o f i l e  (di- 
gressing from .the o v e r a l l  amplitude decrease as l/&), while t h e  second term 
l eads  t o  p r o f i l e  d i s to r t ion .  
of the  p r o f i l e  po in t  a t  a d i s t ance  from a certain given l a r g e  ro t o  r is ob- 
ta ined by mult iplying by eo 'dr and in t eg ra t ing  from P t o  ro a t  constant  x. We 

then obta in  

The quant i ty  6r of t h i s  add i t iona l  displacement 

- 

it = c, (i +%) 
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I f  we examine the wave p r o f i l e  as t h e  change of  p'  with T when r is given, 
t h e  p r o f i l e  d i s t o r t i o n  6r w i l l  be  

As we know, a diverging c y l i n d r i c a l  wave can be written i n  l inear  approx- 
imation as 

The s i g n  of f i s  t h e  inve r se  of t h e  usua l  one which, correspondingly, is 
t h a t  i n  t h e  given case t h e  wave.is propagated from the p o s i t i v e  values  of T t o  
t h e  negat ive ones,  
values  of the q u a n t i t i e s  f o r  t h e  equi l ibr ium state f o r  brev i ty .  

Here and below, w e  s h a l l  omit t h e  zero  subsc r ip t  t o ' t h e  

In our case,  t h e  t i m e  T is a c t u a l l y  t h e  coordinate  2 .  We s h a l l  select the  
re ference  o r i g i n  wi th in  the  body (at the  given moment of t i m e ) .  The regions i n  
f r o n t  of t he  body w i l l  thereby correspond t o  p o s i t i v e  values  of 2. 
disturbances a r e  not propagated i n  t h e  space i n  f r o n t  of t h e  body during super- 
sonic  motion, i t  is poss ib l e  i n  any case t o  confirm t h a t q  + 0 when T + =. 
Furthermore, a t  s u f f i c i e n t l y  l a r g e  d is tances  behind t h e  body, where the  dis- 
turbances caused by it are small (even on t he  axis i t s e l f  r = 0) t h e  p o t e n t i a l  
of the  diverging wave, which i s  determined by formula (7),  must remain f i n i t e  
when r =: 0. For convergence of the i n t e g r a l  

In so fa r  as 

i t  i s  necessary t h a t  f ( r ) + O  f o r  high negat ive T a t  t h e  
negat ive T). Hence, i t  i s  easy t o  conclude t h a t v  + 0 
Conversely, the  v a r i a b l e  p a r t  of pressure  i n  t h e  linear 

2 l e t e d  to CP by means of the  e q u a l i t y  P' = pe aTLar.' I n t eg ra t ing  with respec t  
t o  'I, we consequently ob ta in  

lower l i m i t  ( fo r  h igh  
a l s o  when T + - m .  

approximation i s  re- 

+m $ p 'd t -0  
-OD 

This means t h a t  i f  t h e r e  is  bunching i n  the  gas ( the  reg ion  p' > 0),  a 
r a re fac t ion  region must necessa r i ly  exist also where p '  < 0. I n  t h i s  r e l a t i o n ,  
a c y l i n d r i c a l  wave ( the  same app l i e s  t o  a s p h e r i c a l  wave) d i f f e r s  s i g n i f i c a n t l y  
from a two-dimensional wave which may cons i s t  of only s i n g l e  bunchings o r  s in -  
g l e  r a re fac t ions .  

1290 
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. .  . ... . 

A s  w e  know, a shock wave occurs  i n  a gas  when a body moves a t  supersonic  

It follows from what has been 
Con- 

ve loc i ty .  
i s  a bunching region d i r e c t l y  behind the  wave. 
s t a t e d  above t h a t  bunching must n e c e s s a r i l y  be rep laced  by r a re fac t ion .  
sequently,  a po in t  must exist a t  which r a r e f a c t i o n  is maximum. 
e f f e c t  of gradual  p r o f i l e  d i s t o r t i o n ,  t h i s  po in t  w i l l  l a g  behind those s i t u a t e d  
behind it .  F ina l ly ,  as a r e s u l t ,  ambiguity is obtained,  and another  shock wave 
appears. 

The gas is  motionless  i n  the  space i n  f r o n t  of t h i s  wave, and t h e r e  

. 
Owing t o  t h e  

Thus, we a r r i v e  a t  t h i s  r e s u l t :  a t  least a t  s u f f i c i e n t l y  l a rge  d i s t ances  
from a moving body, t h e r e  is n o t  one shock wave (as has usua l ly  been supposed), 
but  two shock waves which fol low each o the r .  
experiences an upward shock. 
lows and bunching i s  replaced by r a re fac t ion .  
increases  abrupt ly  i n  t h e  second shock wave. 

I n  t h e  f i r s t  wave, t h e  pressure  
Then a region of gradual  pressure  decrease fo l -  

Af t e r  t h i s ,  t h e  pressure  again 

-.- - .-- , * 
$:e- ;i; Figure 1 schematical ly  i l l u s t r a t e s  ( so l id  

l i n e )  t h e  r e s u l t i n g  p i c t u r e  of pressure  p' as a 
func t ion  of 'I, i.e., as a func t ion  of coordinate  
x ,  a t  a given l a rge  va lue  of P. The segment ab 
corresponds t o  the  f i r s t  shock wave and de cor- 

pressure only inc reases  up t o  a c e r t a i n  nega- 
tive va lue ,  while  p '  becomes equal t o  zero 

r 
. responds t o  the  second. I n  the  la t ter ,  t h e  
' 

d 
asymptot ical ly  when r -+ = 00. 

Figure 1. 

Proceeding t o  a q u a n t i t a t i v e  c a l c u l a t i o n  
of t h e  p r o f i l e  i l l u s t r a t e d  i n  Figure 1, l e t  us examine t h e  region between both 
shock waves. 
tance r 

Let the  func t ion  t = f ( X )  determine the  p r o f i l e  a t  a certain d i s -  

0' 
Taking i n t o  account the  effect of p r o f i l e  d i s t o r t i o n ,  w e  ob ta in  a p r o f i l e  

a t  the  d is tance  r > r by adding t h e  displacement 6~ t o  'I according t o  (6). 0 

A t  large r values ,  t he  quan t i ty  X is  small; and i t  is poss ib l e  t o  write 
the  value of the  func t ion  f ( X )  i n  (9) with s u f f i c i e n t  accuracy when X = 0 .  

i s  a l s o  poss ib l e  t o  d is regard  5 i n  comparison wi th  6. 
It 

Thus, 

The value of coordinate  x at  poin t  e (Figure 11, where X = 0, is designated 
Cer ta in ly ,  t h i s  value depends on r, according t o  the l a w  x = const  - d e .  by xo. 0 

/291 Proceeding t o  t h e  v a r i a b l e s  p '  and x ins tead  of X and T, we have - 
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Thus, t he  p r o f i l e  segment bd proves t o  be  rectilinear. The dot ted  line i n  

Actually,  there is a d i scon t inu i ty  a t  
Figure 1 i l l u s t r a t e s  t h e  p r o f i l e  which is obtained d i r e c t l y  by applying t h e  
Riemann s o l u t i o n  i n  t h e  entire i n t e g r a l .  
a certain po in t  a. The p o s i t i o n  of t h i s  po in t  i s  determined by the geometric 
condi t ion explained above regarding t h e  equa l i ty  of areas a'b'c and ubc. 
t h a t  x = 0 a t  po in t s  a' and e ,  we s h a l l  f i n d  the- following by us ing  (9) f o r  -the 
a rea  a'b 'c:  

Noting 

i.e., t he  va lue  which does n o t  prove t o  be  dependent on r. Consequently, the 
very same th ing  must t ake  p l ace  f o r  the  a r e a  &e. 

Considering the  quant i ty  x as  a func t ion  of r(10), w e  f i n d  without d i f -  
f i c u l t y  t h a t  t h e  sec t ion  length  from po in t  c (where p '  0) t o  the leading 1 
shock wave ( p '  = p,'> is propor t iona l  t o  

r Hence, t he  law of the  compression shock p 1  i n  the  leading shock wave as a 

funct ion of d i s tance  w i l l  be 

h f o r  t h e  second d i scon t inu i ty  ed (Figure l), i t  is  easy t o  show t h a t  t h e  
r a t i o  of t h e  pressure  remaining behind t h e  d i scon t inu i ty  (pressure a t  po in t  e) 
t o  the  compression shock p ' i n  the  d i scon t inu i ty  (segment length  ed) tends t o  

uni ty  when r -+ m. However, t h i s  is a relatively slow process.  The p res su re  be- 
hind t h i s  d i scon t inu i ty  can be considered t o  be equal  t o  zero only a t  very l a r g e  
d i s t ances  r .  
e n t i r e  p r o f i l e  area must be equal  t o  zero,  

2 

The p Z f  compression shock is  equal t o  pl'  by v i r t u e  of (8), the 

L e t  us f u r t h e r  d i scuss  t h e  s p h e r i c a l l y  symmetrical shock wave propagation 
which occurs during an explosion and is  viewed f a r  from t h e  explosion. 
reasoning here  i s  exac t ly  t h e  same as t h e  reasoning presented above. 

A l l  

During s p h e r i c a l  propagation, wave amplitude drops i n  the f i r s t  approxi- 
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mation as l/r, whereby r i s  t h e  d i s t ance  t o  t h e  center. 
( 5 ) ,  w e  have 

Therefore,  i n  p lace  of 
_.c - 

(14 1 

for the ve loc i ty  u of p r o f i l e  po in t  movement, which, i n  terms of x ,  is design- 
a ted  

P' (15 1 
X--r 

?* . 

Correspondingly, f o r  the  p r o f i l e  po in t  displacement b r  on a pa th  from a 
c e r t a i n  r to  r ,  we f i n d  

r 
0 

-. r 
0 

8 r = w ~  log ';r 

If  we consider t h e  wave p r o f i l e  a s  t h e  change of p with time t, t h e  d is -  1292 
t o r t i o n  6t i s  

Thus, p r o f i l e  d i s t o r t i o n  of the s p h e r i c a l  wave increases  with d i s t ance  
according t o  logar i thmic  l a w ,  ;.e., i t  is much slower than the  p r o f i l e  d i s to r -  
t i o n  inc rease  of two-dimensional o r  c y l i n d r i c a l  waves. 
p r o f i l e  d i s t o r t i o n  is  correspondingly propor t iona l  t o  t h e  f i r s t  power o r  roo t  
of t he  d is tance) .  In so fa r  as usua l  sound absorpt ion r e l a t e d  t o  v i s c o s i t y  and 
hea t  conduct ivi ty  always takes  p lace  during the  propagat ion of a real wave i n  
a gas, i n  view of the slowness of the d i s t o r t i o n  inc rease ,  a s p h e r i c a l  sound 
wave can be absorbed before  p r o f i l e  d i s t o r t i o n  l eads  t o  the  formation of d i s -  
con t inu i t i e s .  
plosion shock wave, t h e  second shock wave which might have followed i t  (as i n  
t h e  case of a c y l i n d r i c a l  wave) cannot o r ig ina t e .  

(In the la t te r  case, 

In p a r t i c u l a r ,  i f  i t  is a quest ion of t h e  propagation of an ex- 

I n  the  case under inves t iga t ion ,  i n  p lace  of (9) w e  have the equation 

By expanding f(x) i n  a s e r i e s  with respect t o  powers of x ,  l i m i t i n g  out- 
se lves  t o  terms of the  first order ,  w e  ob ta in  

8 
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where a i s  a certain constant. 
pendence on t as 

Hence, we again obtain for p '  the l inear de- 

Considering the law of conservation of area, for the spherical case we now 
obtain 
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